Skip to Main Content

Data Science


Dr Ergun Simsek | Data Science Graduate Program Director

Dr Ergun Simsek Ph.D., in Electrical and Computer Engineering, Duke University
M.S., in Electrical and Computer Engineering, University of Massachusetts Dartmouth
B.S., in Electrical and Electronics Engineering, Bilkent University (Ankara, Turkey)


Dr. Ergun Simsek earned his PhD from Duke University in 2006 and worked as a post- doctoral research associate at Schlumberger Doll Research Center for the following two years. From 2008 to 2017, he was a faculty member at Bahcesehir University (Istanbul, Turkey) and the George Washington University (Washington, DC). In addition to teaching at both undergraduate and graduate levels, he also conducted research on scientific computing for different applications in electromagnetics, photonics, geophysics, material science, and data science. His research was supported by different agencies such as National Science Foundation, TUBITAK, and European Union Research Council. He has published more than 30 peer-reviewed journal papers and made more than 60 presentations at international conferences. He continues researching how to solve emerging engineering problems through efficient and robust computational techniques.

Before joining UMBC, Dr. Simsek was a manager for Exponent, where he teamed up with engineers, scientists, and regulatory specialists for solving challenging problems of consumer electronics, medical device, and IoT appliance manufacturers. Dr. Simsek is a senior member of IEEE and a licensed Professional Engineer.

Tim Oates, Ph.D. | Professor

Professor, Data Science
Professor of Computer Science and Electrical Engineering

Ph.D., Computer Science, U.Massachusetts, Amherst, 2000
M.S., Computer Science, U. Massachusetts, Amherst, 1997
B.S., Computer Science, B.S., Electrical Engineering, 1989


Dr. Tim Oates is a Professor in Computer Science and Electrical Engineering (CSEE) department and Director of the University of Maryland Baltimore County’s (UMBC) Cognition, Robotics, and Learning (CoRaL) Laboratory. He received his Ph.D. in Computer Science from the University of Massachusetts Amherst in 2001 and spent a year as a Post-doc in the MIT AI Laboratory. He was appointed an Oros Family Professor of Computer Science to work on a project to improve healthcare in developing countries.

He pursues research in the fields of machine learning, artificial intelligence, natural language processing, mobile healthcare, and robotics. Specifically, he is interested in developing a theoretical and algorithmic basis that will allow machines to replicate the human transition from sensors to symbols to semantics. Previously, Dr. Oates  worked as aChief Data Scientist at CircleBack.

John Clemens | Adjunct Professor

Amen Ra MasharikiJohn Clemens, an adjunct professor with UMBC's Department of Computer Science and Electrical Engineering (CSEE), is a computer scientist and researcher with over 20 years of experience in operating systems, hypervisors, computer security, and machine learning.

John has been a senior staff researcher for the Johns Hopkins University Applied Physics Lab (JHU/APL) since 2009, where his main area of research is building trusted computing systems from IoT devices to cloud servers. Prior to joining APL, John was lead software architect at StackSafe, Inc., and also spent time as a kernel engineer at Sun Microsystems. He has also been active in the open source community, contributing to several open source projects including the Linux kernel. His current research interests include building adaptable software systems using machine learning. He has extensive experience with many programming languages including C, C++, Python, Rust and the machine learning frameworks Keras, TensorFlow, and PyTorch.

John graduated from Rensselaer Polytechnic Institute (RPI) in 2000 with a B.S. in Computer Engineering with a concentration in high performance parallel systems. In 2017, he achieved doctoral candidacy in Computer Science at UMBC.

Jim Kukla | Graduate Faculty

B.S., Computer Science, UMBC
M.S., Computer Science, UMBC

Jim Kukla, an adjunct professor with UMBC's Department of Computer Science and Electrical Engineering since 2014, has nearly 20 years of experience as a software developer, researcher, and educator. He co-founded and is the current CTO of RedShred, a software development company focused on helping business users extract critical information from unstructured text documents. In addition to years of experience with software engineering, he also has a strong background in management and leadership as well as a wide variety of development frameworks and languages (including reactjs, django, python, javascript, C++, C, java, lisp, mysql, postgresql, mongodb, elastic, and more).

He graduated from UMBC with a B.S. in Computer Science in 1997 and continued on in the department, earning his M.S. in 2000. His areas of focus included 3D graphics, visualization, and animation. In addition, he was an active member of Upsilon Pi Epsilon and the Computer Science Council of Majors. Jim brings a strong understanding of Machine Learning, Deep Learning, and NLP to the Data Science department at UMBC.

Amen Ra Mashariki | Adjunct Instructor

Amen Ra Mashariki Ph.D., Information Engineering, Morgan State University
M.S., Computer Science, Howard University
B.S., Computer Science, Lincoln University

Amen Ra Mashariki, an adjunct professor with UMBC's Department of Computer Science and Electrical Engineering, leads Urban Analytics at Esri. Esri is a digital mapping pioneer that builds big data and analytics software that provides location intelligence and insights for almost every industry.

As the head of Urban Analytics at Esri, Dr. Mashariki is responsible for the messaging and strategy for applying data science principles to urban challenges, ensuring that data-driven decision makers will realize impactful and positive outcomes in urban policy and operations. Previously Dr. Mashariki was Chief Analytics Officer for the City of New York and the Director of the Mayor’s Office of Data Analytics. He ran the civic intelligence center that allowed one of the largest cities in the world to aggregate and analyze data from across agencies.

In 2012, Dr. Mashariki was one of eleven individuals appointed by the President of the United States to the 2012-2013 class of White House Fellows. Immediately after the Fellowship he was appointed the Chief Technology Officer for the Office of Personnel Management.

Dr. Mashariki currently serves as a Fellow at the Harvard Ash Center for Democratic Governance and Innovation.

Ben Payne | Adjunct Professor

Adjunct Professor Ben PayneBen Payne, an adjunct instructor with UMBC's Department of Computer Science and Electrical Engineering (CSEE), is a scientist focused on applications of data science to challenges in the Department of Defense (DoD) where he is a computer systems researcher in the area of High Performance Computing (HPC).

At the DoD, Ben's focus is on identifying new technologies and opportunities in HPC to enhance mission capabilities. This includes evaluating technical proposals for research investment, establishing baseline system requirements, as well as writing mission related software (he particularly enjoys creating Python code and Bash scripts for data analysis). Prior to working at the DoD, Ben developed software for Physics simulations and utilized large scale computers for those calculations. In addition to his extensive computational experience, Ben was an aircraft mechanic in the Air National Guard, deploying overseas twice.

Ben graduated from the University of Wisconsin at Madison in 2006 with a B.Sci. in Applied Mathematics, Engineering, and Physics. He completed a Masters and PhD in Physics at the Missouri University of Science and Technology.

Patty Stanton | Adjunct Professor

Patty Stanton

Patty Stanton, an adjunct professor with UMBC’s Department of Computer Science and Electrical Engineering (CSEE), is a Data Scientist with over twenty years of database engineering, business intelligence, and analytics experience.

She performs as a lead Data Scientist to support analytic and machine learning efforts in the Advanced Data Analytics Lab at the Social Security Administration. She holds a Master of Science in Analytics from Texas A&M University and a Bachelor/Master of Science in Information Systems from American Sentinel University. She has numerous IT certifications to include Microsoft Certified Application Developer and Microsoft Certified Database Administrator. She is a frequent guest speaker at community data science related events.

In 2017, she was awarded the Texas A&M Margaret Sheather Memorial Award in Analytics for her Capstone Project, “Using Decision Trees to Analyze Patterns in Disability Fraud.”

Her interests are machine learning, text mining, and using GPUs/distributed processing to improve the performance of analyzing and processing big data. She is proficient in SQL, C#, SAS, R, and Python. She has worked with a variety of database systems to include SQL Server, Oracle, DB2, Hadoop, and Sqlite.

© UMBC Division of Professional Studies · 1000 Hilltop Circle, Sherman Hall East 4th Floor, Baltimore, MD 21250 · 410-455-2336 ·